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Abstract

In a video scene, motion estimation (ME) can be studied on a dense field (optical flow) or
on image structures or regions. Image structures can be deduced from the motion itself or
formerly deduced by a segmentation. A scheme of ME, funded on a Bayesian segmentation
using a Potts-Markov model, has lead to a ”region-matching” ME scheme [5]. Bayesian seg-
mentation has been operated, with the same model, in the wavelet domain and has shown
an interesting gain in segmentation speed [6]. In the present work we have synthesized both
approaches to demonstrate a new scheme of region-matching ME which uses the hierarchi-
cal property of the multiscale segmentation scheme. A bottom-top ME is built from the
hierarchical segmentation in the wavelet domain. We show that a hierarchical, region-based,
ME, can provide an interesting approach w.r.t. the necessity of ME robustness as well as
its scalability, in a region (or object) -based compression scheme. This approach is to be
compared with recent developments like the “structure from motion” (SfM) in [15], based on
Bayesian inference and sequential Monte Carlo methods, and the “trace model” for object
(face) detection and tracking in [12] (see also [13]) .

Key Words: Bayesian segmentation, Potts-Markov modeling, orthogonal wavelets multireso-
lution, motion estimation (ME), hierarchical ME, motion vectors (MVs), scalable ME, video
compression, region matching..

1 Introduction

We investiguate here a Scalable Hierarchical Motion Estimation (SHME) for video compression.
This SHME relies on a multiresolution, region-based, segmentation. The goal of this work is
to show that, in a region-based approach of the segmentation, and of the ME, this one can be
transmitted progressively. This method thus affords a real ”scalability” and, hence, the ability
to fit to low complexity decoders, which is not the case for yet studied hierarchical approaches
[3, 1]. In the same way, if enables to compensate faster, and to decode, the spatially coded
frames. The multiresolution construction of the ME provides a more robust estimation and de-
coding. The transmission of MVs at each scale and in an object approach is, to our knowledge,
a very new scheme. It goes on the way of today’s developments about semantic-based video
coding, analysis and data mining.

The emergence of content-based representations of a video scene, like the ”MPEG-4 visual”
standard [16], has put aside pixel-based and block-based traditional scene representations. A
content-based representation of a scene is mostly based on a partition of each frame, with an
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interdependency of a number of successive frames [17, 14]. Algorithms following this strategy of
scene representation can be classed as second generation coding algorithms. These algorithms
use either of two different homogeneity criterions : the spatial or the temporal one. Some use
both [17] .
Salembier [17] has studied a segmentation-based video coding with object manipulation. In his
model, the ME of each region of the partition tree has to be estimated for the merging steps and
for the decision. The motion of each region is represented by a polynomial model. Parametric
models have been investigated [18, 9], but a simple affine model is used by Salembier. We have
also investigated such a ”trajectory approach” for ME in [7], but we do not develop it in this
paper.

2 Incremental segmentation in the direct domain

Our ME scheme was initially based on the incremental unsupervised segmentation of a still
image. This segmentation is operated in a Bayesian framework, and is based on a Potts-Markov
model (1) in the pixel domain of a still image. This model was developed initially by Féron et
al. and has been improved recently in [10]. The hypotheses made for the segmentation are : a
gaussian noise (N1) over the whole image, a gaussian law (N2) for the pixels intensity in each
region, an independency of the pixels in different regions, and the ”attractive-repulsive” Potts
model for the construction of the regions. In this section we recall the simple and efficient
improvement brought in [5] by making the hypothesis that a close correlation can be assumed
between the successive frames (images) of a sequence. This hypothesis leads to segment only
the first frame of a sequence with a high number of iterations. The segmentation of the next
frames is then initialized by the segmentation of the previous frame. This enables to drastically
reduce the number of iterations and to increase the segmentation speed of the whole sequence.

p(z(r), r ∈ R) =
1

T (α)
exp
{
α
∑

r∈R

∑

s∈V (r)

δ(z(r)− z(s))
}

(1)

PMRF with a first order neighborhood in the pixels domain

where r stands for the pixel position, z for the hidden Markov variable for the segments, s for
the sites of a first order neighborhood, δ is the Kronecker symbol whose value stands for the
potential energy, α is the Potts ”attractivity” parameter and T (α) is a normalization
coefficient.
From the knowledge of the observable g and from the hypotheses formulated above, we are
able to give an explicite expression of the posterior probability for the initial f image, as well
as for its segmentation z. For the computation of the MAP estimate, we use a Monte Carlo
framework [8, 2]. This gives us, through the Gibbs sampling algorithm (2), the required
numerical values to compute the estimate of the original image f and of the segmented image
z, as well as the hyperparameters (means and variances of the prior laws) knowing all the
pixels of the observed image.





fn ∼ p(f |g, z(n−1),θ(n−1))
zn ∼ p(z|g,θ(n−1),f (n−1)

θn ∼ p(θ|g,z(n−1),f
(n−1)

)
(2)

One iteration of the Gibbs sampler
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where θ stands for the hyperparameters of the priors, i.e. the mean and variances of the
gaussian laws N1 and N2, and n is the iteration index.

3 Bayesian segmentation in the wavelet domain

In order to reduce the computation time of the Gibbs sampler the initial bayesian
segmentation based a Potts model has been projected in the wavelet domain [6]. It segments,
in a bottom-up scheme, the scaling and wavelet subbands, by :
a) considering the wavelet coefficients as a mixture of only two gaussians, which leads to a
segmentation in two classes.
b) incrementally segmenting all subbands from the initial coarse scaling coefficients
segmentation, thus sparing segmentation iterations and time.
The decomposition of our observable g̃ in the wavelet domain can be expressed :

g̃(g, Vj ,Wj) = P (g, VJ) +
J∑

j=1

P (g,Wj) (3)

Observable decomposed in the wavelet domain

with Vj and Wj respectively the scaling and wavelet subbands, and j = {0...J} the scale (J is
the coarsest scale).
In order to operate a Bayesian segmentation in the wavelet domain, we recall that a new
PMRF model was used in [6]. This one takes into account the privileged orientations of the
coefficients in an orthogonal wavelet decomposition, i.e. vertical, diagonal and horizontal. It
thus considers a second order neighborhood for the PMRF, which leads to the new expression
of this PMRF :

p(z(i, j), (i, j) ∈ R) = 1
T (αV ,αD1

,αD2
,αH) × exp

{
+αV

∑
(i,j)∈R

δ(z(i, j)− z(i− 1, j))

+αD1

∑
(i,j)∈R

δ(z(i, j)− z(i+ 1, j − 1))

+αD2

∑
(i,j)∈R

δ(z(i, j)− z(i− 1, j − 1))

+αH
∑

(i,j)∈R
δ(z(i, j)− z(i, j − 1))

}
(4)

PMRF tuned to the privileged orientations of the wavelets subbands (second-order
neighborhood)
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Figure 1: Original frames 10 and 11 of the ”tennis” sequence, upsampled here to 752×512 for the needs
of the segmentation and of the ME tests.
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Reconstruction des coeffs ondel. segmentes : IWT−SEG tennis010 

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

Reconstruction des coeffs ondel. segmentes : IWT−SEG tennis011 
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Figure 2: a) Final unsupervised segmentation, with a two-scales decomposition and six classes, of frames
10 and 11.

4 Hierarchical segmentation

A first innovation in our new hierarchical segmentation-ME scheme, is to make the hypothesis
that there is a close correlation between all the corresponding subbands of two successive
frames. This observation leads us to segment now the coarse scaling subband of any image
n+ 1 from the result of the segmentation of the corresponding subband of image n. We then
can improve the segmentation scheme by using the segmentation of scaling coefficients of
image In to initialize the segmentation of the scaling coefficients of image In+1. This can be
very interesting for large frames where the initial image segmentation is long.
A second innovation is that we now reconstruct the image at each level of the decomposition
and from the segmented subbands at each level. This is a trivial step which brings a set of 2L
segmented frames. The same rules are applied for the filtering, i.e. the scaling subband regions
are replaced by the a ”region averaging” of the original scaling coefficients. The wavelets
subband regions, for K = 2 are replaced by their original wavelet coefficients and the
coefficients, for K = 1, are zeroed.

Figure 3: Detailed part of the incremental segmentation from two successive frames at scale j = 2, and
computation of the MV at this same scale. This step has been added to the wavelet segmentation step
and is done at each scale j for two successive frames, after the segmentation of their subbands at the
same scale j and after a reconstruction from the segmented subbands.
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Figure 4: Wavelet domain segmentation scheme with the new reconstruction and ME computations at
each scale

5 Hierarchical motion estimation

Based on the region-based segmentation, we can compute now the ME of regions or objects at
each level. This approach offers two possibilities :
1) to compute the MVs at a coarse scale, thus offering the property of scalability which is
interesting (see MPEG4 standard) for the computation speed and the adaptativity to the
complexity of the decoder.
2) the ability to make an inter-scale correlation of the MVs, from the coarse to the fine scale,
and thus to increase the robustness of these MVs. An illustrative example would be the
”Edberg” sequence where the tennis player is a global ”object”, with its global motion, which
is itself composed of several smaller objects (the members) having their own local motion. In
such a case the low resolution analysis can easily provide a global motion which is not the case
if we compute the VM at a high resolution.
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Figure 5: Incremental segmentation from the coarsest scale (j = J = 3) of two successive frames, 10
and 11. The histograms are shown to check that, at this coarsest scale, we start the segmentation with
the requested number of classes, i.e. K = 6. This coarse resolution segmentation highlights the fact
that there are four main regions in the frame : the sprite (almost static) background, the ball, the hand
and the racket. The coarse subbands is thus able, better than other scales, to give a simple, condensed,
representation of the scene by a ”key” segmentation. This key segmentation is a the basis of the ME
scheme robustness.

Figure 6: a) Reconstruction after segmentation at scale j = 2 for frame 10 b) same for frame 11 c)
MVs computation based on the motion of the mass center for the ”ball” region. The tracking of the ball
between frames 10 and 11 is based on a ”mass correspondance” principle [5], i.e. a close number of pixels
pertaining to the same class k, and in a fixed neighborhood of the ball, between these frames.
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Figure 7: a) Reconstructed image of segmentation at scale j = 1 on frame 10 b) same for frame 11.
MVs between scales have a strong correlation which is obvious on this higher resolution frame. We thus
are able to adopt the same reasoning for MVs than for the spatial segmentation : an initialization by the
MV of the former scale must induce a faster computation of the MV at the present scale on the same
object. The use of a cross-correlation distance (region-based matching) rather than a difference between
masses (see e.g. : the search of an optimal MV in an energy based ME [11]) could bring more robustness
in our scheme.
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6 Conclusion

In this work we have shown a new approach of the motion estimation in a region-based (or
object-based) framework and in a hierarchical scheme. The originality of this scheme resides in
the hierarchical computation of MVs on regions, together with the ability to transmit these
MVs at each scale, which enables the scalability of their transmission. This scheme is based on
the combination of a wavelet multiresolution, of a bayesian spatial segmentation performed in
the wavelet domain, on the acceleration of the segmentation for correlated images (incremental
segmentation scheme) and of the computation of MVs on the displacement of the mass center
of regions (or objects). The improvement of region to object can be made, if we have no initial
knowledge of the regions tracked, by using a shape recognition algorithm [4].
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