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Abstract

This paper describes a new fully unsupervised image segmentationchiietbed on a Bayesian approach and a Potts-Markov
Random Field (PMRF) model that are performed in the wavelet domaBay®sian segmentation model, based on a PMRF
in the direct domain, has already been successfully developed antliteg28, 12]. This model performs a fully unsupervised
segmentation, on images composed of homogeneous regions, byioitr@@ hidden Markov Model (HMM) for the regions
to be classified and Gaussian distributions for the noise and for the pixtésnieg to each regions. The computation of
the posterior laws, deduced from these a priori distributions for the pisaef®ne by a Markov Chain Monte Carlo (MCMC)
approach and uses a Gibbs sampling algorithm. The use of a high nahiteeations to reach convergence in a segmentation,
where the number of segments, or “classes” labels, is important, ritaketgorithm rather slow for the processing of a large
quantity of data like image sequences [4, 5]. To overcome this problenawetaken advantage of the property of the wavelet
coefficients, in an orthogonal decomposition, to be modeled by a mixttmedsaussians. Thus, by projecting an observable
noisy image in the wavelet domain, we are able to segment, in this same daoheaimavelet subbands in only two classes.
After a decomposition up to a scale J, the main idea is to segment the cardsamall, approximation subband with a high
number of classes, and to segment all the detail (wavelet) subbandeniijithwo classes. The segmented wavelet domain
coefficients are then reconstructed to obtain a final segmented imagedimeabedomain. Our tests on synthetic and natural
images show that the segmentation quality stays good, even with noisy iraageshows that the segmentation times can be

significantly reduced.
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1 Introduction

Numerous methods for the segmentation of images have beeloded and are today available. Statistical methods talhwhi
are closed to our approach can be classified into two mairpgrou

- Contour based methods. The extraction of contours in agénpeovides a first way to implement the segmentation of an
image into regions. Markovian modeling as wellMaximum a Posterior{MAP) deterministic optimization algorithms, like
the Graduated Non-Convexity (GNC) [21] and the Mean Fielaidaling (MFA) [27], are used in contour-based methods.

- Region based methods :

Thefirst typeis based on themono-dimensionahodeling of the histogram, with inter-modes thresholding Bulti-Gaussian
modeling. Also when the image is considered like a reabratf a discrete random process, local or global, stochastic
tributes can be used. A second type is representetlisyeringmethods [1], hierarchical or not, like K-means, Fuzzy C-nsea
or Cluster, which is also called "unsupervised learning’][Jpages xiii and 134, and works by organizing data follayvam
underlying structure that groups individuals or makes aanahy of groups. A third type is finally the one to which our

method pertains and englobes the Markovian methods, sspdrand unsupervised. In this last category, we must ciée on



of the most important works using the regularization andigeeMaximum Likelihood (pML) in a supervised segmentation
of textured images [13, 14]. More recently, numerous workeehbeen made in the development on wavelet features based

models in a Bayesian segmentation approach.

Our work pertains to the group of region-based segmentatietmods and in particular of unsupervised segmentatioh-met
ods. A brief presentation of unsupervised segmentatiohoalstcould start with multivariate Gaussian Markov RanddetdF
(GMRF), models that have been extensively applied for tigenemtation of still images [15].

Since several years, the multiscale Bayesian approachesdemonstrated good results in the domain of still image seg
mentation as well as recently in the domain of animated sempgesegmentation. The supervised, partially-unsupshasd
fully unsupervised segmentation of still images with nadéle Bayesian approaches has been widely studied andbeéelscr
in the literature. Under the Bayesian framework, multiscbproaches have proven to efficiently integrate imagefest
(like wavelet coefficients) as well as contextual inforroat{like labels in a HMM approach) for the classification. fyea
features can be represented by different statistical imaggels. Contextual information can be obtained by usingisuale
contextual models like, for example, the interscale deproy of class labels between scales in a multiscale appi@ach
Also, the Joint-Multicontext and Multiscale Segmentat{i@MCMS) was developed by using the fusion between intréesca
and inter-scale information [10]. In order to fusing the timdale contextual information, several methods have bsed : a

Multiscale Random Field (MRF), combined wittsaquential maximum a posteriori estima{&MAP), was developed [2, 6].

More recently, the transfer of the observed model to a duadadio like the wavelet domain has enabled to fully take advan-
tage of the very interesting property of wavelet coefficgentbe modeled : intra scale, by an Independent Gaussiaranglix
(IGM) and inter scales by considering the evolution of eaelvelet coefficient. Models using the evolution of inforroati
between scales, like the wavelet domain Hidden Markov THAT) [9, 20], and an improved version using the dependencies
across subbands (HTM-3S) [11], have been developed. Al§0] ia multiscale segmentation was developed based on the
HMT and the inter-scale fusion of contextual informationm#&thod has also been proposed recently to realize the ursupe

vised segmentation using HMM in the wavelet domain togethitir clustering methods [25, 24].

In our group, we have developed a fully unsupervised segtientalso based on a Bayesian approach in the direct domain
[23, 12]. This method uses a HMM for the classification lalsigned to the different regions of an image. The difference
of this HMM compared with HMT models is that it is based on at®tarkov Random Field (PMRF) for the pixels. This
enables to render the strength of dependency of neighbelsgixinsure a good homogeneity of the region being segmente
In this direct domain approach the PMRF uses a first ordethbeignood. More recently, we have used the same model to
segmenRD + T videos sequences, i.e. regularly sampled sequences oéinfdly We have thus demonstrated a significant
improvement in the segmentation of a sequence of imagesinfuthis result to motion detection and quantification alsd a

to sequence compression, is being under way and might ture &m efficient method amongst other recent developments for



motion acquisition, quantification and compression.

Nevertheless, though very efficient for long term segmanigirocesses, we are also very much interested in redunérggg-
mentation time. This has motivated a new approach basededratisfer of the segmentation process in the wavelet ttemsf
domain to perform the segmentation. Due to their specifipgny of fast “local-decay”, the wavelet coefficients, obéal

by decomposition on an orthogonal basis, behave like a meixitizero-centered Gaussians [18, 9, 20]: a first, high naea
distribution representative of a few strong coefficientsnafjor importance, and a second, “peaky” low variance digtion
representative of a large number of low magnitude and lovoimamce coefficients. Thus the segmentation of these bassl-p
“subband” coefficients can be made using only 2 classesdabeirthermore, by zeroing coefficients pertaining to tlas<!

of low importance coefficients, we denoise the data and asere¢he performances of the segmentation, see recent works o
wavelet denoising using Scale Mixture of Gaussians (SMG&) % Based now on a decomposition in the wavelet domain we
found also pertinent to improve the PMRF model used in thectidomain. This is why we adopted a first + second order,
8-connexity model, for the PMRF. This was motivated by the that wavelet subbands are split in vertical, diagonal and
horizontal details. We thus tuned the Markov Field neighbod to the wavelet subbands orientations through a specific
dependency parameter for the Potts model [26]. So we haueatigitfixed three independent parameters:;, ap anday as

dependency parameters for our new three-orientations Raitlel.

The rest of the paper is organized as follows: Section 2 dEscour PMRF-Bayesian unsupervised segmentation method i
the direct domain. Section 3 points out the important prigeof the wavelet coefficients and what motivated the ahofc
this transform domain to perform the equivalent “dual” of direct domain segmentation algorithm. Section 4 intresuc
our newg-connexity PMRF for the Bayesian segmentation. Sectionsgritees in detail the segmentation algorithm in the
wavelet domain, its initialization with the segmentatidiit® approximation subband, the segmentation of its nudtis detail
subbands in a coarse to fine scale scheme and the final invavedeivtransform to get the final segmentation in the direct
domain. Sections 6 and 7 make a comparison of the resultsrofiem wavelet-domain Bayesian segmentation with the
same method in the direct domain and with other techniqudsegall the important features and advantages of this new

unsupervised Bayesian segmentation in the wavelet domain.

2 Unsupervised segmentation in the direct domain

2.1 Potts-Markov field modeling and Bayesian approach

The description of stillimage segmentation and fusion byage3ian approach and a Hidden Markov Model (HMM) has been
developed and well described by Feron et al. in [12]. We suriz@én this section the main steps for the computation of the
posterior laws necessary in the final segmentation-fudgorithm.

We formulate the segmentation problem as an inverse probtegre the objective is to find a classificatiofr) of an original



imagef(r). The observed imagg(r) is assumed to be a noisy version of the original imége) :

g(r) =f(r)+elr), reR @)
whereTR is the set of siteg of the image.
If we assume the nois€r) to be centered, white and Gaussian. We have :

e(r) o N(e(r)0,v)) = plg(n)|f(r)) = N(g(r)If(r),ve) VreR

If we note by the vectorg = {g(r),r € R}, f = {f(r),r € R} ande = {e(r),r € R} the discretized version of the
images, we can write :

p(glf) = N(glf,vel) 2

wherel represents the identity matrix.

Because the goal is to have a reconstructed imfagegmented in a limited number of statistically homogeneeg®ns, a
hidden variablez, which can take the discrete “label” values {1, ..., K}, is introduced to represent the imafielassified

in K classes. Such a classification enables to segghémtegionsRy = {r : z(r) = k}. When regions pertain to the same
class but are not contiguous, the number of segments iregetmis the number of segments is at least equal to the number
of classes. At this point we also make the hypothesis thdt eegion of the segmented image is modeled by a Gaussian

distribution of meann;, and variancey, :
p(f(r)lz(r) = k) = N(f(r)[mx, vk) @)
So we finally write a model for the distribution of the pixelstioe imagef(r) as :
K
p(f(r) =D aN(f(r)lm, o), with = p(z(r) = k) (4)
k=1
We can also write the dual expression for the observafte :
plg(r)|z(r) = k) = N(g(r)Imx, vi + ve) (%)

and

K
plg(r)) =Y N (g(r)lmp,ve +ve),  with = p(z(r) = k) (6)
k=1

In order to build homogeneous regions, the spatial depaydaegtween the label of each pixel (the hidden Markov vaeiabl

z(r)) and the label of its neighbors is modeled by a Potts-Markand®m Field (PMRF). The Markovian modeling assumes



that the value of(r) at a pixel position is related to the value of its neighbdus fbur closest vertical and horizontal neighbors
in a first order neighboring). The Potts model enables torobrity means of an attractive/repulsiseparameter, the mean

value of the size of a region. Thus the homogeneity for eaa$sdk proportional to the strengthef

perreR) = psepfa Y Y 6a(r) - +(0) ™)

reER seV(r)

whereV (r) represents the neighborhoodrofin the sequel of this section we considéfr) as the first order neighborhood
(4-connexity) of the pixer-.
More explicitly, if we consider a first order neighborhootistone includes the four pixels of the horizontal and vattic

neighborhoods. The Potts model can be written explicitihe indiceg, j) of each pixel-(s, 5) :

P11, 6.9) € R) = s xespfay 3 604) - +( - 1)

(i,7)ER

tan 0 86(00) - 2.0 - )} ©®)

(i,7)ER

where we assumey = ag = a.

Using the Bayes rule, the joint posterior law pfaindz can then be expressed :

p(f, zlg) x p(glf,z) p(f|z) p(2) 9)

The prior laws, defined formerly, need some of their pararagtehich are called the modbyperparametersto be defined.

These are, v, andm,. If we want to realize an unsupervised segmentation, th@ eéso-called “hyperparameters” :

0= {UE, (mg,v), k€ {1K}} (10)

has also to be estimated. For this purpose we also apsignlaws to6. These prior laws are taken esnjugate priorsand
depend themselves dryper-hyperparametemshich areaq, 8y, mo andvg. We refer to [23] for the choice and the values of

these final hyper-hyperparameters. Phirs for the setd then takes the form :

p(ve) ~ IG(velag, B5)
plm) ~ N(milml,of) , k= {1..K} (1)
por)  ~ ZIG(uvilak,BE), k={1..K}

whereZd is the Inverse-Gamma.



The expression of the posterior law for an unsupervised satation becomes finally :
p(f,z,0\g) < p(glf,z,0) p(f|z,0) p(z) p(0) 12)

2.2 Markov-Chain Monte-Carlo (MCMC) and Gibbs sampling algorithm

The Bayesian approach consists now in estimating the wieblef sariableg f, z, 8) following the jointa posterioridistribu-
tion p(f, z, 8|g) after Eq. 12. The MCMC method consists in generating sanfplesthis posteriorlaw from which we can

estimate the mean, the median or any other statistics forwatblef, z or 8. For example the mean value fitbecomes :

X 1L
f= [ £ptrigs= >0 (13)

where f(™) are samples drawn frop{ f|g).

To generate samples from the joint distribution in Eq. 12 use the following Gibbs sampling algorithm :

Fro~ p(flg. 20 0Y)
z" ~ plzlg, 0"V, firm (14)

o" ~ p(Blg, 2V ")

where we need to write the expressions of those three postaws :
1) for f
p(flg,z,0) o« p(glf,z0)p(f|z0)
x T1 TT N(a(r)|f(r), 0N (f(r)ms. o) (15)

k rERy

o< T IT N(f(r)lmi, o)

k rERy

27% g(r) _1
with iy, = by [ e 4 2T coie=(24+L) and Ry={r:z(r) =k}

p(zlg, f,6) o p(glf, =z 0)p(f|z,0) p(z]0)
Lot fi.v0) p(Filme, )| o(2) 5)

K

k rERy

x [H I1 N(f(r)mk,sz)] p(z)

We can notice that this posterior law is also a PMRF where tie probabilities are weighted by the posterior likelilbo

3) for 6



p(0|fagvz) O(p(ve|f7g) Hp(mk‘vh .f7z)‘p(vk".f7z) (17)

k

where :

-Forthe noise:  p(velf,g) < IG(ve, |, B),  witha =n/2+af andf =5 Y (g(r) — f(r))* + 5
rcR

andn = Card(R), is the total number of pixels.

- For the mean in each regidn: p(mg|f, 2, vk, mo, vo) o< N (my|ug, &)
f(r

. —1
with s = & <m: + “‘) € = (fk n Lk) . and  ny, = Card(Ry)

Vi Vg Vg

- For the variance in each regidn p(v) x ZG(vg|ak, Bk)
with ap=af+% , and BE=B+3 X (f(r)—mi)?
reERy

This algorithm is iterated a “sufficient” number of timesefmax) in order to reach the convergence of the segmentation.
We do not use any real “convergence criterion” and by corargzrg we mean that the segmented regions do not change
significantly in the next iterations. After convergence, take the max(histogram) for each pixel value and for alkitens.
Also, our experience on the images analyzed has showedtugdhaax depends essentially on the complexity of the image
and the number of luminance levels, as well as on the numbalas$es taken for the segmentation. In general for a number

of classed = 4 we takeitermax betweer20 and50. If we generate a number of samplésrmaz = N,

(f’z’e)(l)’ (f7 z7 0)(2)’ "'(f7z70)(L)7 A (f"z?O)(N)

the algorithm starts providing homogeneous segments dteya“heating time” of L samples. The final value for eachgbix

is given by the median, the maximum of its histogram or themahe(N — L) last values :

N

A 1 n
(F.2.0)~ 3 n:Zm(f,zﬁ) (18)

3 Projection in the wavelet domain

As mentioned in the introduction, our Bayesian segmematiethod, based on a Potts-Markov random field modeling in
the direct domain, gives good classification results. Nbedess the main drawback of such an algorithm, using iterat
sampling, is to exhibit very important computation timesr Bne of our concerns is to perform the segmentation on video
sequences, we are interested in lowering these computaties. Using the projection of the observable onto a transfo

domain can provide interesting properties. In particut@rwavelet domain coefficients exhibit properties that &g inter-



esting for our segmentation application :

- It gives a sparse representation of the observable.

- It presents the property of fast local decay of the wavebetfficients that enables a modeling of these coefficients by a
mixture of two Gaussians.

- It reflects, by analyzing the evolution of the wavelet caidints between scales, the strength of singulariti€ddét coeffi-

cients) of each pixel of an image, and in the same way can ntbdelependency of pixels between scales.

More precisely it has been established [8, 9, 20] that theslgaoefficients of “real-world” signals exhibit a local cdsy
property which means that the coefficients of highest enengy of utmost representativity for the signal, are veryspand
that the coefficients of low energy, and of low importancetfa signal, are in large quantity. In the probability domaie

can then express the marginal density of the wavelet caoafticiby one spread and heavy-tailed, i.e. with a large wagian
Gaussian density, for the important coefficients, and bytarorery peaky, and low variance, Gaussian density for dledfie
cients of low importance. Such a property is well expressed imixture of Gaussians and the coefficients can be considere
approximately decorrelated due to the Orthogonal Wavettsform (OWT) decomposition used (Fig. 2).

As a result of this we may notice that the model of mixture o #@aussians can be very interesting when performing our
Bayesian segmentation in the wavelet domain. It meanshlat@égmentation in the wavelet subbands can be done by using
only two classes. Then making a projection of the observabfegmenting the coarse approximation subband with a high
number of classes and finally segmenting the successivé sigtdbands with only two classes up to the image resolution
significantly reduces the segmentation cost.

We will now introduce the wavelet decomposition, then wiisdribe the complete segmentation algorithm in the wavelet

domain.
In order to proceed with the same Bayesian segmentatioroagipiin the wavelet domain, we first need to decompose the
observabley on an orthogonal basis of scaling and wavelet functions. ¥éetle classical multiresolution pyramidal decom-

position of Mallat. This decomposition uses shifted andtéitl versions of the scalingand wavelet) functions.

The observable is written as a function of its decomposition coefficientsy, 5, anddfbhbz, as:

g(x’ y) = Z aJ,bl 7b2 ¢§:§1,b2 ("1/', y) + Z Z Z dfbl,bgwfbl,bQ ('T7 y) (19)
(by,b2)€Z BEBj<J (b1,ba)€Z
wheregry | = 27727z — b1,27 9y — by), 7y 4, = 2799P (2792 — b1,277y — by) andB = {HL,LH,HH}. The

HL, LH and HH are called the details, or wavelet, subbandsnd.td represent the low and high pass band conjugate mirror
filters, respectively, andg. Thus HL correspond to the vertical, LH to the horizontal &tdlto the diagonal subband. LL is

called the approximation, or scaling, subband.



The decomposition coefficients are expressed as :

wriin = [ 9w )bk, dody (20
.
and
A7y, b, = /R 9@, 9)8, 4, drdy 1)

In the sequel we will use the notatidfy, W,", W andW/, respectively for the subbands LL,HL,LL and LH.}", W

and WjH are respectively the vertical, diagonal and horizontahilsubbands. The corresponding wavelet filters are given

by :
WY = 6,0
WP — 0] (22)
WH — 0]

The decomposition of our observahlés done from the initial resolutiof = 0 or 27 up to the scale/ or 27. Decomposing
on two scale means thdt= 2 and the scaling parameterji 0,1, ..., J. The corresponding resolution to a scale is obtained
by the inverse powe?—7. The confusion between scale and resolution is easy ane iseitjuel we will try to stay as clear as

possible in the description of the algorithm starting frdra toarsest scale (the highg}pt

With this notation, the decomposition of our observaple the wavelet domain can also be expressed as :

J
9(9, V5, Wy) = P(g,Vy) + Y _ P(g, W) (23)

Jj=1

The figures below describe the application of the waveldtogional transform on one band of an hyperspecl §pectral
bands) image of a satellite view. The figures 2 b) and c) sh@pegtively the histograms of the approximation coarse
subband and of the detail diagonal coarse subband. As psdyisaid, the first histogram can be modeled by a mixture of
several independent Gaussians, which motivates the ségtioanof this approximation subband in a high number of Isbe
Conversely the second histogram of the detail diagonalautblban be modeled by a mixture of two independent Gaussians
(which is more visible in the lin-log representation), oniéwa high variance (sparse high value coefficients) and atreav

low variance (numerous low value coefficients) and the segatien in all detail subbands is thus done with only two labe

10
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Figure 1:a) Original image of the Channel 100 of an hyperspectral satellite imagpased of 224 channels. b) Pyramidal representation
of the Fast Orthogonal Wavelet 2-levels decomposition applied to the #mneh100 of our hyperspectral image. Here the lettean be

replaced byJ, the scale parameter at the coarsest szhleands.

Figure 2: a) Histogram of thed ; (or A,,), the approximation coefficients at the coarsest scale. b) Histograim déscribed by a mixture
of multiple Gaussians, one for each class. ¢) Histogram oftHe(or DZ), the detail diagonal coefficients at the coarsest scale. d) Linlog

histogram of theD? explaining the choice of a two independent Gaussians mixture model, véttamge and one small variance.

4 Eight connexity, first and second order Potts-Markov random field

4.1 Model description

In order to find statistically homogeneous regions for thggreents, our Markovian segmentation method in the directadom
uses a Potts-Markov random field [12] to define the spatiatddency of the labels in the HMM. In this direct model, the
dependency of the pixel label is searched in a first ordethheidhood. Nevertheless and due to the fact that the segtizenta
is done now in the wavelet domain, we have to take into acabamthis spatial dependency is quite different than in fhect
domain due to the fact that the three “detail” subbands aemt&d in the vertical, diagonal); = 7/4 andD, = 37 /4 ) and
horizontal directions. This prior knowledge is taken inbc@unt by introducing these orientations in a new “eightrexity”

(or neighborhood of orders 1 and 2) Potts-Markov RandondFighe new model of the PMRF can be written:

11



p(z(i,5),(i,j) € R) = T(av,%l{%m) X exp{ +av( ; §(z(i,5) — 2(i — 1,5))
,J)ER

+ap, Z 6(2(27.7)_2(7’+1a.7_1))

+op, > 0(2(i,j) —2(i—1,j 1))
(i,j)ER

vag Y 6(z(i,5) — 2(,j — 1)) }
(4,5)ER

The parametersy, ap1, ap, anday respectively control the degree of spatial dependencyeot trariable in the directions

V, D1, D> andH. For the wavelet “diagonal” subband we gather iheand D, dependencies in one diagorda] D, depen-
dency. For the first, coarse, approximation subband, wegatter the/” and H dependency in & H dependency which is
equivalent to the first-order dependency (first order nesghdod) used in the direct-domain implementation.

Also, in order to accelerate the sampling of the image sitesmplement the MCMC-Gibbs algorithm “in parallel” [12] |
we consider, for thé&” H dependency, that the label value of one site is conditiangie label values of the sites of its first
order neighboringg((z(, j)|2(¢,5 — 1), (i — 1, j)), then all the pixel sites corresponding to the white (odohbered) cases

of a chessboard can be considered as independent (Fig.l4 a3ame way all the black cases (even numbered) of thischess
board can be considered as independent conditionally tealues of the white sites in their first order neighborhoobu§

we are able, once all the white cases are sampled, to sartie alack cases in only one iteration due to the independenc
of the sites. With this scheme, the whole image can be samptaw successive iterations, one on the black sites and one o
the white sites.

Similarly, for the D, D, dependencies, we can also use an implementation “in pémaiflldhe Gibbs sampler, but by using a
different scheme for the independent sites. The image isgplit in two sets of interlaced black and white sites whichldes

to consider each type of sites as independent conditiot@tlye knowledge of the sites of the second order neighboring
The application of our new PMRF model to the wavelet subbandene by deleting the PMRF terms that do not apply to
the subband concerned. Moreover the parameter used in this “vertical” term can be adjusted topagjtive value, which
means that we assign a specified, non null, dependency gtiesigveen the labels z of the region concerned. As we have see
in [12], this means that the higher theparameter, the higher tlaepriori of a little number of great homogeneous regions. For
the first, coarse, approximation subband, we also gathértaed H dependency in & H dependency which is equivalent

to the first-order dependency used in the direct-domaineémphtation.

12
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Figure 3:First, second and fourth order Markov fields (after [16]). The farster neighboring is used in the parallel implementation of
the Gibbs sampler for th& H dependency (scaling subband). The second order neighboringdsruthe parallel implementation of the

D, D, dependency (diagonal wavelet subband)

Black labels Black labels
White labels

White labels

Figure 4:Parallel implementation of the Gibbs sampling algorithm. By considering thgeraa divided in two sets of independent white
and black sites, one iteration of the Gibbs sampler for the whole image cenid@nly two times : one time on the black sites and the
second on the white sites. The two sets of sites are build differently degeonithe directions of the neighbor sites considered : a) set
of independent sites for the vertical and horizontal directions (fidgroneighboring) b) set of independent sites for the diagonal direxction

(second order neighboring) .

4.2 Application to the wavelet decomposition

The application of this model to the wavelet subbands is dpndeleting the PMRF terms, in expression 24, that do not
apply to the subband concerned. For example if we want to eegthe coefficients in th& subband, we apply only the
corresponding PMRF term, i.e., the one that deals withtldeependency. Moreover thg, parameter used in this “vertical”
term can be adjusted to any vale0, which means that we assign a specified, non null, dependgrenygth between the
labels z of the region concerned. As we have seen in [12]imk&ns that the higher theparameter, the higher tlaepriori of

a little number of great homogeneous regions. For most oappglications, the number of classes is relatively légw < 10)

and we thus can take a value®felatively high, i.e. equal to 1.

13



5 Bayesian segmentation in the wavelet domain

The initial operation to perform on the image to be segmernsditst to do its decomposition on an orthogonal wavelethas
The decomposition used here is the classical Mallat pyrahtiensform of complexityD(N?). This transform enables to
get wavelet coefficients which are split in two main classtf®:weak and the strong coefficients. Noticing this pointhan t
wavelet coefficients has an important incidence for segatiemt purposes : it enables to segment the “detail” imagéls wi
only two classesK = 2). On complex images, i.e. the first “approximation” subhahe segmentation will be led with a

higher number of classes, e§. = 8.

Algorithm description

Our segmentation scheme in the wavelet domain is based carsecto fine scale scheme (Fig. 5). The Bayesian segmenta-
tion is performed on the wavelet subband coefficients anll staes with a low valudS = 2, except for the approximation
coefficients. The segmentation starts from ghabservation projected into the wavelet domain. The segatientalgorithm

can be described with the following steps:

1) Wavelet decomposition to the ordéri.e. down to scal@’, on an orthogonal basis (Haar wavelet). This wavelet is@hos

for its property w.r.t. image discontinuities, a propettgttwe are going to use within the next steps.

2) We segment the approximation coefficieliisat scale2’ with the number of classes desired in the final segmentagign,
K = 8. For the Gibbs sampling, and with a large valudsgfthe iteration number is given a high value in order to asthae

convergence.

3) In the segmented image of the approximatie(;), we detect (by derivation) the regions exhibiting verticiihgonal

(/4 and3x/4) and horizontal discontinuities.

4) At this same scale, thiedetail subband8/}, WP andW ! are segmented and we respectively use, as an initialization
these segmentations, the 3 subsets of discontinuitis, diff p anddiffy computed at the former step. This step is realized

with a weak number of classe& (= 2) and of iterations of the Gibbs sampling.
5) The 3 segmented detail subbands are upsampled by 2 intondgyeat the process at the next upper level.

6) We segment the 3 detail subbamﬂ’%_l), W(L}_l) and Wg_l) on the basis of the initialization obtained in the former

step. The same process is then repeated up to the imageti@mséduel.

7) We reconstruct the segmented image starting from thesesascal@’ of the decomposition. The reconstruction uses:
- for the initial approximation scale (level): the average of the original scaling coefficients withicleeegion of the seg-
mented approximation subban@’;(z;,)) with k € 1, ..., K.

V.D,H)

- for all the detail subbands: the original wavelet coeﬁi@er?e{l___J},

for the segments that pertain to the class 2. The

coefficients pertaining to the class= 1 are cancelled.
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8) We re-classify the histogram, in the direct domain, ofsegmented image obtained in the former step. This is done by
finding the thresholdg'h?,, j € {1...(K + 1)} of the modes of this histogram. This re-classification isessary because
there is no reason for the wavelet coefficients to pertater afiversion, to a perfect classification i classes. This step is
easily realized by using th& meansn, computed at the coarsest approximation s&gland used now to find the histogram
modes thresholds by simply taking the mid-point of the mdansach couple of successive classé%%,f = % We

also take, as value for the first and the last threshdidg, andTh% "', respectively the minimum and maximum values of

the pixels.

9) The re-classification of the histogram is done in the sarop hs the new labeling of the pixels i successive classes,

which provides at the same time the final segmented imagédrasses withk starting fromi.

From a first point of view, this approach, based on the in#izdlon of the segmentation of the coarse detail subbarmas fr

the discontinuities in the segmentation of the approxiomatubband, can be considered as a way to take into account the
intra-scaledependency of the wavelet coefficients. From a second péiview, the initialization of the segmentation of
detail subbands at a scaleby the segmentation of the detail subbands at the immedaateser scalg + 1, can also be

considered as a way to take into accountitiier-scaledependency of the wavelet coefficients.

Remark : the only parameters to choose before starting the conipatate the maximum number of iteratiorigermax,

of the Gibbs sampling algorithm, and the numbéof classes requestedtermax is generally taken large enough to assure
the convergence of the segmentation, i.e. betwdesnd50. K must be taken at least equal to the number of classes in the
image, if this value is known. The value &f will automatically decrease to fit the maximum number of stesin the image,

but will not increase. Nevertheless, if the number of iterat is too low, the algorithm will not converge towards tloerect
number of classes and will give a value between the valuedeeshe the real value (see Fig. 8). If the number of classes is
unknown, thenk” must be chosen accordingly to the purpose of the application

In a natural image, this number is generally taken betweenamd ten. Among other adjustable parameters arevihgs
parameter, i.eay, oy, ol andadl, for the approximation and detail subbands:, a;,, af}, andafi, are generally fixed to

1. Nevertheless, this parameter can be adjusted, espdoaigme natural images. The possibility to adjust sephrate in

the coarse approximation subband anjfl, oy, andad}, in the detail subbands enables to get smaller or larger heneagis
regions in the initial segmentation of the coarse approtionasubband and to give more or less importance to the discon
nuities in this subband and thus to the size of the regionsdmiavelet subbands. These parameters, tested on somal natur
images, can be efficiently trimmed betwe®h and5. Another important initial parameter is thg initial segmentation of

the observable, if we own a liable knowledge of it. It is thégre initialization parameter that we use, between subbands

in our algorithm, to improve the segmentation speed. Tharpatersn, v, andv. can also be initially fixed if we have a
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knowledge of them. In any other cases all these parameteiseckeft to their default initial values and will be autoncatly

computed.
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Figure 5:Wavelet domain Bayesian segmentation scheme. The observegliddiimt decomposed in the wavelet domain (2 scales shown

here). It is then segmented in this domain, with six labels for the approximatibband and two labels for all the detail subbands. The

approximation subband is filtered by replacing the val(ig = k of each clas& by the average of the initial scaling coefficients. All the

wavelet subbands are filtered by zeroing the coefficients pertaining thetbsk = 1 of “weak coefficients” and by leaving the coefficients

of classk = 2 at their initial value. The final segmentation is obtained by reconstructioriditect domain and histogram reclassification.
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Figure 6:a) Mallat's pyramidal representation of the segmented imagehe approximation part is segmentedsiclasses (color part).
The detail subbands are represented in black for the class of the wefficients, that are zeroed, and in white for the class of the strong

coefficients that will be used for the final reconstruction. b) Recoottmiresult of the wavelet segmentation shown in the direct domain.

6 Results and comparison

In this section we show comparative results on three exawflest images. The first test image is a synthetic mosaigema
“texmos3.51024" that we upsampled from the texmos3.s5a2éof the SIPI [22] database and that we have perturbed with
additive Gaussian noises of different variances for théregand for the whole image. The second test image is a hatura
image of the SIPI database representing the San Diego coBsird Loma. The third image comes from one band of an
hyperspectral AVIRIS satellite image of the earth and takmongst th&24 contiguous channels of thiSD” image.

Four segmentation algorithms are compared : (1) the dir@ctaih Bayesian Potts-Markov Segmentation (BPMS), (2) the
Wavelet Bayesian Potts-Markov Segmentation (WBPMS) ptesén this paper, (3) the HMT segmentation from [7] and (4)
two versions of a clustering K-means algorithm with two eliéint distance measures.

For the first example we have tested the algorithms 1, 2 andrdhE second example we have tested the algorithms 1, 2 and
3. For the last example (our hyperspectral image), we havgpaced the methods 1 and 2.

To evaluate the segmentation quality, we use the numenRad] Eriterion which is th@ercentagef pixels that are correctly
classified, showing thaccuracyof the segmentation [25, 24]. This test is used of courseyfothetic images (our first test)
with a knownz classification.

We also indicate for each of the tests the computation timetwik an important challenge for us. All computations hagerb
done on a 1.6Mhz Pentium M, with 1MB of cache-RAM and 512MBt8gsRAM, which is not an optimal configuration
for running image processing algorithms. This let us suppbat on a dedicated image processing machine, and a paralle

architecture, we would reach much lower computation times.
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6.1 Firstexample

In this example we use the "texmos3.s1024" mosaic of the @Bhal and Image Processing Institute) database of the USC
(University of Southern California). This mosaic iS&2 x 512, 8 bits, image, upsampled tth24 x 1024 composed of

23 regions and 8 classes of homogeneous (not texturedngegile have upsampled this image in order to demonstrate the
WBPMS on four scales of decomposition, which enables to segtenting a not too small approximation subband of size
64 x 64 pixels. In order to model a more complex image, we have simpposed additive Gaussian noises with different
variances for each class to this texmos3s mosaic. Furtlrefmglobal Gaussian noise with another variance has belmdad

to the previous image noised “by class”. The figure 7 showstlggnal, the noisy 'observed’ imaggand the histogram of

this observed image.

6.1.1 Testimage : texmos3.s1024 SIPI Database image withditive Gaussian noises of different variances

The original histogram of this synthetic image is not reprieed here for it is composed of the eight bars ranging froenton

eight, thus characterizing the eight classes of the origimage. We show the image modified by various Gaussian naisgs

its histogram where the modes between the last third cldssEsnes difficult to detect.

Figure 7:a) Original f image of the synthetic texmos3s mosaic of the "SIPI" database, upséfnmie512 x 512 and showing thé( = 8
classes split ir23 regions. b) texmos3s mosaic perturbed by additive Gaussian noises diitérent variance for each class and by a global

gaussian noise of another variance value. c) Histogram of the noisgienos

6.1.2 Result with the BPMS method : Bayesian Potts-Markov segemtation in the direct domain

The BPMS method has been tested viithiterations. The number of classes requested and obtairgedlise computation

time is 1805s and the percentage of accuradyds= 80.34%.
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Figure 8:a) Result of BPMS method with parametdts= 8 anditermaxz = 20. The percentage of accuracyf& = 80.34%. The

computation time is 1805s. b) Final histogram with fie= 8 requested classes.

6.1.3 Result with the WBPMS method : wavelet Bayesian Potts-M#&ov segmentation

The WBPMS method has been tested with two scales of deconquosif = 4 andJ = 3. For both scales the number of
iterations i20 for the scaling and the wavelet subbands. Witk 4, we have obtaine®a = 94.8% in a total timet = 260s.
With J = 3, we have obtained®®a = 98.06% in a total timet = 384s. These two results show a very good quantitative
behaviour of our method for this test image.

e Results with a decomposition dnscales.

IWT-SEG-CLASS x10° SEGMENTED IMAGE: HIST Normalisé >0 ; scales =4 x10' Reclassified Wave Segmented Image ; scales =4

100 200 300 400 500 600 700 800 900 1000 (] 2 4 6 8 10 12 14 (] 1 2 3

Figure 9:Segmentation of the texmos3.s1024 mosaic with added Gaussian ndisesghentation parameters are== 4 scales, number

of requested classds = 8, iteration numbetdtermaxy, = 20, Itermaxw = 20. The segmentation quality obtainedis = 94.8%

in atimet = 260s a) Final segmentation b) Non reclassified final histogram, after rewmtion, which shows a number of reconstructed
pixels, coming from the wavelet subbands, and spread at the bottora ofdim modes c) reclassified histogram in the direct domain and

corresponding to the classification shown in a).
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Figure 10:Following of Fig. 9. a) Segmentation of subbakdb) Histogram of subbant; showing that the classes have been already

found at the coarsest subband.

e Results with a decomposition @nscales.

«10°  SEGMENTED IMAGE; HIST Narmalise >0 ; scales =3
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Figure 11:Result of the segmentation with= 3 anditermax = 20 for both types of subbands. Here we reach an accuragg.06%

in a computation time of 384s. a) Final result of segmentation b) Histogedanébfinal reclassification showing a pixel classificatio in

classes c) Segmentation of subband d) Histogram of the classified subbavigl

6.1.4 Clustering (K-means) method

The clustering method algorithm we use is derived from the&ans method. The K-means clustering partitions the image

into K clusters. Within each clustér;, of pixels, we compute the means, and the variances,. Then, for every pixeD;;,

we compute either thé, or the L, distance, with :

and

Lg(k‘) — Z(Dz]vk_ mk)2

Then the pixelD;; is classified in the clagswhich corresponds to the minimal distance.
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Figure 12: Classification results by the clustering method and distances L1 and L2oilhe@arameter isk = 8 classes requested
(and obtained according to the histogram shown in part b) of this figkar)both distances the percentage of accuracy % and the

computation time id 16s a) Result of segmentation with distance L1 or L2. b) Final segmentatitoghésn in6 classes.

6.1.5 Comparative results

In order to test the quality of the segmentation we count tmalver N, (r) of pixels mis-classified in the final segmented
image w.r.t. the image of the z original image.

We can compare in the table below the results of the clasdficeith the three methods and two different levels of depom
sition for our WBPMS method. We obtain a very accurate clasgifin compared to the K-means method and a much shorter

computation time than with the BPMS method.

Method Classes Pixels mis-classified Percentage of accuracyy) | Total classif. time

requested/obtained

BMPS (20 iter.) 8 206114 80.34% 1805s
WBMPS(J=4, 20 iter.) 8 55488 94.8% 260s
WBMPS(J=3, 20 iter)| 8 20336 98.06% 384s
K-Means ; andL,) | 8 530196 49.44% 116s

Table 1: Comparison of three segmentation methods on thaeioest image “texmos3” from the SIPI database. The origina
image, quantified oR bits, has been upsampled frait2 x 512 to 1024 x 1024 and has been perturbed by a Gaussian noise of
different variance for each class, and a global additivesSiam noise. The number of requested classes for the seaginant

is K = 8 for all methods, which is the number of classes of the tesgenalhe quality of segmentation is based on the

number of mis-classified pixels, which gives the percentdgecuracyP, as used in [25, 24].
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6.2 Second example

In this second example three methods on a natural satefldge (12 x 512 and8 bits) of the San Diego coast. We compare
the segmentation results obtained with the following mesho

- The Bayesian Potts-Markov HM segmentation in the directaio (BPMS ).

- The Bayesian Potts-Markov segmentation in the waveleteh@diBPMS ).

- The Bayesian semi-supervised multiscale segmentatisechen a HMT model [7].

For the first two methods we have imposed a number of cldssess. The result with the HMT model is originated from [7]
and is a binary segmentation, i.e. with only two classes,setmurpose is to make the distinction between the maritirde an
the terrestrial zones. So, first because we compare thésesuhatural images, second because it is with a differdneva
of classes, and finally because the HMT method uses a semivisgd algorithm based on textures discrimination, wé wil

comment the methods on a qualitative point of view.

San-isgo-pat-512
e

nnnnn

11111

S0 100 150 200 20 W0 350 400 4% 00

Figure 13: a) San-Diego coast test image2 x 512, 8 bits per pixel. b) Histogram of this test image leading to an interpretation of the

image as a mixture of two main distributions, which are materialized by thedistipctive earth and the sea regions.

6.2.1 BPMS, Bayesian Potts-Markov segmentation in the dire@tomain

The BPMS method has been tested with= 6 classes requested apditerations. The number of classes obtainegl i$he

computation time with these parameters is 114s.
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Figure 14:a) Bayesian segmentation in the direct domain with= 6 classes and a number of iteratiaitermaz = 20. Computation

time = 114s. b) Histogram of the final segmentation.

6.2.2 WBPMS, wavelet Bayesian Potts-Markov segmentation

On the San Diego image, the WBPMS has been tested Mith 6 classes requested aBd iterations as for the BPMS
method. The number of classes obtained.ighe number of scales for the decompositio.isThe computation time with

these parameters is 79s which is slightly faster (114s) ttheBPMS method for the same number of iterations.

IWT-SEG-CLASS x10° SEGMENTED IMAGE; HIST Normalisé >0 ; scales =2

50 10 150 200 20 W0 30 400 450 500 (] 50 100 150 200 250 300 350

Figure 15:WBPMS segmentation of the San-Diego coast. Requested, and obtaingaemof classes i& = 6. Number of iterations is
20 and number of scales is= 2. The segmentation time is 79s. a) Final segmentation b) Raw histograome be€lassification, exhibiting
6 classes and a number of spread, misclassified, pixels mainly due toctiresteiction of the wavelet subbands. ¢) Segmentation of the
coarse approximation subbam@ d) Histogram of the coarse approximation subband showing the detettioa®classes at this level of

decomposition.

6.2.3 HMT method

The goal of the segmentation for the authors was to segmertéethestrial zone from the maritime zone. The segmentation
based on a HMT, is thus realized wiltlasses. Using a HMT method, this means that the segmentatiotake into account
the textures. The two textures are in this case the maritimlettze terrestrial texture. The HMT unsupervised segmientat
has nevertheless to be initialized by a supervised leanfitiese two textures. The authors take two sub-images icatreers

of the original whole imagel(24 x 1024) that best represent the maritime and the terrestrial texaspectively and find the
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model that best fit with these two textures. We can neverkeletice that parts of the maritime zone (submarine hattyor,
right of the sub-images in [7]) are reduced between step th)rarr-scale fusion, step and sub-image c). So if the résult
good for the mountain chain which is classify in their resdlia terrestrial zone, on the counterpart it is likely to oedsome
maritime zones (harbors in the bay). We tend to encountesah®e problem, with our method, when segmenting this image

in two classes.

Figure 16:a) San Diego : original 024x1024 image used for the learning phase of the two textures (ocean and eaatie)jalized by
two 100 x 100 square sub-images. b) Result of a raw binary segmentation at thdeuigebn a sub-image of sizZ6 x 256. ¢) Binary

segmentation result by inter-scale fusion.

6.2.4 Results

Segmentation is done withl = 6 classes.

- With the BPMS : Itermax = 20; Computation time is 114s.

- With the WBPMS : Itermax(Approx.) = 20; Itermax(Details) 8;2lotal computation time is 79s with 2 scales.

- With the HMT method we do not know the computation time. Thsutt, with this method, shows that the authors are
able, after a learning phase of the maritime and terresékélires, to realize a classification in two classes : oneesgmting
only the terrestrial regions and a second representing thelynaritime zones. In particular they have shown good tesul
in segmenting the north-south mountains chain, on the fdfieterrestrial zone, in an almost homogeneous regionasiscl
"earth”. Nevertheless, in their paper the progression éititercale-fusion based segmentation shows that the lyrafithe

"earth” class in this mountain chain is done to the detrinefrome maritime zones inside the bay.

6.3 Third example

The test image is a satellitespectral band image taken from a "hyperspectral image”pas®ed o224 images taken i224
contiguous spectral bands and already shown in Fig. 1. Ttheest here is again to classify, in a fully unsupervised, wag
natural image in homogeneous regions accordingly, as maiplossible, to the different objects or regions that complose
image.

We take the same number of iterations for the BPMS and WBPM®$aust i.e.20. In the WBPMS method, we have one

parameter for the maximum number of iterations in the sgatiparse subband and another parameter for all the wavelet
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subbands. We fix both parameters to the same value2(.e We take2 scales of decomposition in the WBPMS method,
which, according to numerous trials, is a good value for ansimage which presents many details and also for an imhge o
size512x. Working on two scales means that the codrsesubband is segmented on a sub-image of 828x 128 which
stays large enough and does not affect small regions by atge subsampling.

The computation time with the WBPMS methodriZs to compare with 10s with the BPMS method. This makes a slightly
faster algorithm for the same number of iterations. But tlestsignificant point of the test is the quality of the segratoh

obtained with the WBPMS in comparison with the BMPS methodpfdy 20 iterations.
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Figure 17:Comparison of the segmentation results with BPMS and WBPMS methodsypeespectral satellite image of siz&2 x 512.
The segmentation parameters &fe= 6 requested classes afd iterations @0 for the subbands V and W in the WBPMS method). Both
methods lead to a final classification in theequested classes (histograms not shown here). a) Original nambdd a hyperspectral
satellite image. b) Bayesian segmentation in the direct domain with the BPM®adnékie segmentation time id0s. c) Segmentation
result with the WBPMS method; the number of scale3 @&1d the segmentation time78s. We notice that the difference in computation
time is slightly better with the WBMPS, but above all that the result with the BPM®&odewvould need more iterations to reach a correct,

more homogeneous, segmentation.

Figure 18:Segmentation detail of the coarse approximation subBanal level2 and its histogram showing that the number of classes
found atV; already corresponds to the numki€r= 6 of requested classes and that subsequent detail subbands selgaxtbdsa more

detailed segmented image.
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7 Conclusion

We have presented a new algorithm for the segmentation gfédsbased on a Bayesian segmentation performed in the wavele
domain. The first originality of this work resides in the falcat we do the image segmentation in the wavelet domain, but
rather than using the HMT property of wavelet coefficients, e@ncentrate on the initialization of a PMRF approach in a
coarse to fine scale scheme. This wavelet-Bayesian seginarisamainly based on the hypotheses of Gaussian disiitmit

for the image, the noise and the regions segmented. Due fadhthat the segmentations are done with only two classes fo
all the Band-Pass subbands, we obtain a significant reducfithe complexity. The second originality of this work isth

a second ordeR-connexity, Potts-Markov Random Field has been developéit tb the three main orientation of the detail

subbands of the wavelet decomposition.

This WBPMS scheme has led, depending on the test, to a redwdtibe computation time by a factor of ten or even more,
for the same classification quality. We have tested the WBPIMSdifferent levels/ of decomposition. The best results have
been obtained foy betweer and4. The numbet/ could exceed the value dfbut for large images, i.e. abot@24 x 1024.
The reason is that small regions tend to disappear whenzbéefgihe coarse approximation subband is very smallglike64

or less. In this case, if the image contains many detailggtiens become small and the number of classes iirjhsibband

may become inferior to the number of requested classes.

We have shown that the quality of segmentation on a noisyhsticttest image (texmos3 mosaic) can exhibit a good acgurac
of classification in a much shorter time than the other methested, especially in comparison to the same method peztbr

in the direct domain (BPMS).

The main goal of our WBPMS scheme was to provide a new fully pestised algorithm for fast segmentation of still images.
We think this goal has been reached. A second main applicétito lower the segmentation speed of video sequences, as

well as the motion estimation and the off-line video compi@s, a work that we have initiated in [4] and [3].

Acknowledgments

The authors are very grateful to both anonymous reviewerthér attentive and constructive remarks that helped avgpr

the quality of the presentation.

26



References

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

H-H. Bock. Clustering methods - a review of classical aacknt approaches. Rroceedings of Modelling, Computation

and Optimization in Information Systems and Managememin8es Metz, France, July 2004.

C.A. Bouman and M. Shapiro. A multiscale random field nidde Bayesian image segmentatiolizcEE Transactions

on Image Processing(2):162—-177, March 1994.

P. Brault. On the performances and improvements of metiimed wavelets for motion estimatio'SEAS Transactions

on Electronics1(1):174-180, 2004.

P. Brault and A. Mohammad-Djafari. Bayesian segmeatatf video sequences using a Markov-Potts mot¢SEAS

Transactions on Mathematic3(1):276-282, January 2004.

P. Brault and A. Mohammad-Djafari. Bayesian wavelet dimsegmentation. |RProceedings of the AIP, American
Institute of Physics, for the International Workshop, MakEon Bayesian Inference and Maximum Entropy Methods

pages 19-26, MaxPlanck Institui@r fStatistics, Garching, Germany, July 2004.

H. Cheng and C.A. Bouman. Multiscale Bayesian segmimtatsing a trainable context modéEEE Transactions on

Image Processingl0(4):51-525, 2001.

H. Choi and R.G. Baraniuk. Multiscale image segmentatizing wavelet-domain hidden Markov modeltEEE

Transactions on Image Processjrif)(9):1309-1321, September 2001.

M.S. Crouse and R.G. Baraniuk. Contextual hidden Mankmdels for wavelet-domain signal processing Phac. of
the 31th Asilomar Conf. on Signals, Systems, and Compuwiisme 1, pages 95-100, Pacific Grove, CA., November
1997.

M.S. Crouse, R.D. Nowak, and R.G. Baraniuk. Waveleteldastatistical signal processing using hidden Markov nedel

IEEE Transactions on Signal Processjrg(4):886—902, April 1998.

G. Fan and X.G. Xia. A joint multicontext and multiscapproach to Bayesian image segmentatiBE Transactions

on Geoscience and Remote SensB#{12):2680-2688, December 2001.

G. Fan and X.G. Xia. Wavelet-based texture analysissymthesis using hidden Markov modelEEE Transactions on

Geoscience and Remote Sens#f@f1):229-229, January 2002.

O. Feron and A. Mohammad-Djafari. Image fusion and unsupedvjsmt segmentation using a HMM and MCMC

algorithms.Journal of Electronic Imagingl4(2), june 2005.

S. Geman and D. Geman. Stochastic relaxation, Giblshiditons and the Bayesian restoration of imalgEE PAMI,
6(6):721-741, November 1984.

27



[14] S. Geman, D. Geman, and C. Graffigne. Locating textuteaject boundaries. In Ed. P.A. Devijver and J.Kittler,

editors,Pattern Recognition Theory and Applicatidteidelberg, 1987. Springer-Verlag.

[15] G.G. Hazel. Multivariate Gaussian MRF for multispatscene segmentation and anomaly detectl®BE Transactions

on Geoscience end Remote Sensi&{3):1199 — 1211, May 2000.
[16] J. (Ed.) Idier.Approche bagsienne pour les problemes inverseigrmes Science, 2001.
[17] A.K. Jain and R.C. Dubedlgorithms for Clustering DataPrentice-Hall, New-Jersey, 1988.

[18] J. Pesquet, H. Krim, H. Leporini, and E. Hamman. Bayesipproach to the best basis selectionlGASSR Atlanta,
May 1996.

[19] J. Portilla, V. Strela, W. Wainwright, and E.P. Simolticelmage denoising using scale mixtures of Gaussians én th

wavelet domainlEEE Trans. on Image Processint?(11), 2003.

[20] J.K. Romberg, H. Choi, and R.G. Baraniuk. Bayesian-steactured image modeling using wavelet-domain hidden

Markov models.IEEE Transactions on Image Processii§(7):1056 — 1068, July 2001.

[21] T. Simchony, R. Chellapa, and Lichtenstein Z. The geadd non-convexity algorithm for image estimation using

compound Gauss-Markov field models.Rroc. ICASSP89%Glasgow, May 1989.
[22] SIPI. Images and videos database. http://sipi.usépedblications.html.

[23] H. Snoussi and A. Mohammad-Djafari. Fast joint separaand segmentation of mixed image®urnal of Electronic

Imaging 13(2):349-361, April 2002.

[24] X. Song and G. Fan. Unsupervised Bayesian image segi@miusing wavelet-domain hidden Markov models. In

Proc. of ICIP, International Conference on Image Procesgsolume 2, pages 423-426, September 2003.

[25] X. Song and G. Fan. Unsupervised image segmentatiog ugavelet-domain hidden Markov models. Rroceedings

of SPIE Wavelets X in applications in signal and image prsices San Diego, 2003.
[26] F.Y. Wu. The Potts modeReview of Modern Physic54(1):235-268, January 1982.

[27] J. Zerubia and R. Chellapa. Mean field annealing usimgpound Gauss-Markov random fields for edge detection and

image estimationlEEE Trans. on Neural Networkd:703-709, 1993.

28



Patrice Brault graduated from the "Conservatoire National des Arts étibts (CNAM)” in Electrical Engineering. Before
joining the "Centre National de la Recherche ScientifiqueiRS)” in 1998, he has been working in the telecommunications
area, mainly for "Matra Communications”, "Apple Europe Baxch” and the "Laboratoire d’Electronique Philips (LEP)”
where he has participated to the development of the first MP@iGital television broadcast system. His main researtdr-n
ests are signal and image processing and in particulartafsagvavelets and Bayesian methods applied to shape rigicogn
motion estimation, segmentation and video compressionis ldeesently finishing a Ph.D. on motion estimation and image
segmentation at the "Laboratoire d’Electronique Fondaaiern{(IEF)”, University of Orsay Paris-sud, in collaboaatiwith

the "Laboratoire des Signaux et Systemes (L2S)” at&Bap

Ali Mohammad-Djafari received his BSc degree in electrical engineering from t@ohnique of Teheran, in 1975, his MSc
(diploma degree) from Ecole Sepeure d’Electricié (Suglec), Gif sur Yvette, France, in 1977 and his "Docteurénigur”
(PhD) degree and "Doctorat d’Etat” in Physics, from the @nsré Paris-Sud (UPS), Orsay, France, respectively in 1981 and
1987. He was associate professor at UPS for two years (19848®). Since 1984, he has a permanent position at "Centre
National de la Recherche Scientifigue (CNRS)” and works abtiratoire des Signaux et Systes (L2S)” at Sugec. From
1998 to 2002, he has been at the head of Signal and Image Biragdivision at this laboratory. Presently, he is "Directde
recherche” and his main scientific interests are in devafppew probabilistic methods based on information theolxim
mum entropy and Bayesian inference approaches for inveobdams in general, and more specifically: image reconstnuc
signal and image deconvolution, blind source separatiata filision, multi and hyperspectral image segmentatioe.ritain
application domains of his interests are computed tomdyré)x rays, PET, SPECT, MRI, microwave, ultrasound, and eddy

current imaging) either for medical imaging or for nondestive testing (NDT) in industry.

29



List of Figures

1

a) Original image of the Channel 100 of an hyperspectral satellite imag@ased of 224 channels. b) Pyramidal rep-
resentation of the Fast Orthogonal Wavelet 2-levels decomposition dppligae the channel 100 of our hyperspectral
image. Here the letter can be replaced by, the scale parameter at the coarsest ZAleands. . . . . . . . .. ... 11
a) Histogram of thed ; (or A,,), the approximation coefficients at the coarsest scale. b) Histogratn described by a
mixture of multiple Gaussians, one for each class. c) Histogram dbfidor D), the detail diagonal coefficients at the
coarsest scale. d) Linlog histogram of th&’ explaining the choice of a two independent Gaussians mixture model, with
onelarge andone smallvarianCe. . . . . . . . . . i e e e e e e e 11
First, second and fourth order Markov fields (after [16]). The Birsier neighboring is used in the parallel implementation

of the Gibbs sampler for th& H dependency (scaling subband). The second order neighboringdsiushe parallel
implementation of thé>, D, dependency (diagonal waveletsubband) . . . . . . . . . . ... .. ... ..... 13
Parallel implementation of the Gibbs sampling algorithm. By considering thgdraa divided in two sets of independent
white and black sites, one iteration of the Gibbs sampler for the whole imaggoce in only two times : one time on the
black sites and the second on the white sites. The two sets of sites are beitdrtiff depending on the directions of the
neighbor sites considered : a) set of independent sites for the ventiddiorizontal directions (first order neighboring)

b) set of independent sites for the diagonal directions (second eedtgtboring) . . . . . . . . . . . . . . ... ... 13
Wavelet domain Bayesian segmentation scheme. The observegliddiist decomposed in the wavelet domain (2 scales
shown here). It is then segmented in this domain, with six labels for thegippation subband and two labels for all the
detail subbands. The approximation subband is filtered by replacingthe 2(r) = k of each clas% by the average

of the initial scaling coefficients. All the wavelet subbands are filtereddrging the coefficients pertaining to the class

k = 1 of “weak coefficients” and by leaving the coefficients of class 2 at their initial value. The final segmentation is
obtained by reconstruction in the direct domain and histogram reclasisifica . . . . . . . . . . . . .. ... ... 16
a) Mallat’s pyramidal representation of the segmented imagdehe approximation part is segmentedsiclasses (color

part). The detail subbands are represented in black for the classwéttlecoefficients, that are zeroed, and in white for

the class of the strong coefficients that will be used for the final reamigin. b) Reconstruction result of the wavelet
segmentation shown inthe directdomain. . . . . . . . . . . . . . . Lo e e e e e e 17
a) Original f image of the synthetic texmos3s mosaic of the "SIPI” database, upsafmgie512 x 512 and showing the

K = 8 classes splitire3 regions. b) texmos3s mosaic perturbed by additive Gaussian noises aiffarent variance for

each class and by a global gaussian noise of another variance JaHistagram of the noisy mosaic.. . . . . . . . . 18
a) Result of BPMS method with parametdfs= 8 anditermaxz = 20. The percentage of accuracyfa = 80.34%.

The computation time is 1805s. b) Final histogram with fhe= 8 requestedclasses. . . . . . . . . .. ... ... 19

30



10

11

12

13

14

15

16

17

Segmentation of the texmos3.s1024 mosaic with added Gaussian ndisesedimentation parameters ate= 4 scales,
number of requested class&s= 8, iteration numbettermaxzyv, = 20, Itermaxw = 20. The segmentation quality
obtained isP, = 94.8% in atimet = 260s a) Final segmentation b) Non reclassified final histogram, after recmtion,

which shows a number of reconstructed pixels, coming from the waseldtands, and spread at the bottom of the main
modes c) reclassified histogram in the direct domain and correspotuding classification shownina).. . . . . . . . 19
Following of Fig. 9. a) Segmentation of subbaVvigb) Histogram of subban®f; showing that the8 classes have been
already found atthe coarsest subband. . . . . . . . . . L e e 20
Result of the segmentation with = 3 anditermaxz = 20 for both types of subbands. Here we reach an accuracy of
98.06% in a computation time of 384s. a) Final result of segmentation b) Histogedanéfinal reclassification showing

a pixel classification i1 classes c) Segmentation of subbaadd) Histogram of the classified subbabgl . . . . . . . 20
Classification results by the clustering method and distances L1 and Lrihearameter ig = 8 classes requested

(and obtained according to the histogram shown in part b) of this figt@)both distances the percentage of accuracy

is ~ 50% and the computation time iEL6s a) Result of segmentation with distance L1 or L2. b) Final segmentation
histogram inG Classes. . . . . . . . . . L e e e e 21
a) San-Diego coast testimagé2 x 512, 8 bits per pixel. b) Histogram of this test image leading to an interpretation of
the image as a mixture of two main distributions, which are materialized by tiyadistinctive earth and the sea regions. 22
a) Bayesian segmentation in the direct domain uiith= 6 classes and a number of iteratianermaz = 20. Computa-

tion time= 114s. b) Histogram of the final segmentation.. . . . . . . . . . . . . . . ... . .. 23
WBPMS segmentation of the San-Diego coast. Requested, and obtaimeloemof classes i& = 6. Number of itera-

tions is20 and number of scales i5 = 2. The segmentation time is 79s. a) Final segmentation b) Raw histograone bef
reclassification, exhibiting classes and a number of spread, misclassified, pixels mainly due tatimesneiction of the
wavelet subbands. c) Segmentation of the coarse approximationmglihal) Histogram of the coarse approximation
subband showing the detection of thelasses at this level of decomposition. . . . . . . . . .. ... ... .... 23
a) San Diego : original 024x1024 image used for the learning phase of the two textures (ocean and eaatkjjalized

by two 100 x 100 square sub-images. b) Result of a raw binary segmentation at thelgigébn a sub-image of size

256 x 256. ¢) Binary segmentation result by inter-scale fusian. . . . . . . .. ... o Lo o000 24
Comparison of the segmentation results with BPMS and WBPMS methods gpeaspectral satellite image of size

512 x 512. The segmentation parameters &'e= 6 requested classes afd iterations 20 for the subbands V and W in

the WBPMS method). Both methods lead to a final classification it6 tiegjuested classes (histograms not shown here).

a) Original mono-band of a hyperspectral satellite image. b) Bayesgmentation in the direct domain with the BPMS
method; the segmentation timelis0s. c) Segmentation result with the WBPMS method; the number of scaesisthe
segmentation time i83s. We notice that the difference in computation time is slightly better with the WBM&Sbove

all that the result with the BPMS method would need more iterations to reastiect; more homogeneous, segmentatio?5

31



18 Segmentation detail of the coarse approximation subBandt level2 and its histogram showing that the number of
classes found &t’; already corresponds to the numldér= 6 of requested classes and that subsequent detail subbands

segments lead to a more detailed segmentedimage. . . . . . . . . ... L L L 25

32



